ar X iv : g r - qc / 9 81 00 25 v 1 7 O ct 1 99 8 Self - dual SU ( 2 ) invariant Einstein metrics and modular dependence of theta - functions

نویسندگان

  • M. V. Babich
  • D. A. Korotkin
چکیده

We simplify the Hitchin's description of SU (2)-invariant self-dual Einstein metrics, making use of the tau-function of related four-pole Schlesinger system. The SU (2) invariant self-dual Einstein metrics were studied in a number of papers [1, 2, 3]. The local classification of the metrics of this type was given in extensive paper by Hitchin [3]. However, the final form of the metric coefficients related to Painlevé 6 equation in Hitchin's description was rather complicated. It is the purpose of this note to give simpler expressions for the same metric, exploiting the formula for the tau-function of the algebro-geometric solutions of the Schlesinger system found in the paper [4]. Following Tod [5, 1], we start from the following form of SU (2)-invariant self-dual Einstein metric: g = F dµ 2 + σ 2

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : g r - qc / 9 51 00 70 v 1 3 1 O ct 1 99 5 The Equivalence Principle and g - 2 Experiments

We consider the possibility of using measurements of anomalous magnetic moments of elementary particles as a possible test of the Einstein Equivalence Principle (EEP). For the class non-metric theories of gravity described by the T Hǫµ formalism we find several novel mechanisms for breaking the EEP, and discuss the possibilities of setting new empirical constraints on such effects.

متن کامل

ar X iv : g r - qc / 9 71 01 22 v 1 2 8 O ct 1 99 7 Superposition of Weyl solutions : The equilibrium forces

Solutions to the Einstein equation that represent the superposition of static isolated bodies with axially symmetry are presented. The equations nonlinearity yields singular structures (strut and membranes) to equilibrate the bodies. The force on the strut like singularities is computed for a variety of situations. The superposition of a ring and a particle is studied in some detail.

متن کامل

ar X iv : g r - qc / 0 10 50 88 v 1 2 4 M ay 2 00 1 A family of heavenly metrics

The antecedent of Einstein field equations with Euclidean signature is the complex elliptic Monge-Ampère equation, CMA2. For elliptic CMA2 solutions determine hyper-Kähler, self-dual and therefore Ricci-flat metrics with Euclidean signature. We shall consider a symmetry reduction of CMA2 to solutions that admit only a single Killing vector. Systematic studies of vacuum metrics with one Killing ...

متن کامل

ar X iv : d g - ga / 9 71 00 18 v 1 1 8 O ct 1 99 7 Three Cocycles on Diff ( S 1 ) Generalizing the Schwarzian Derivative

The first group of differentiable cohomology of Diff(S 1), vanishing on the Möbius subgroup P SL(2, R) ⊂ Diff(S 1), with coefficients in modules of linear differential operators on S 1 is calculated. We introduce three non-trivial P SL(2, R)-invariant 1-cocycles on Diff(S 1) generalizing the Schwarzian derivative.

متن کامل

ar X iv : s ol v - in t / 9 71 00 04 v 1 7 O ct 1 99 7 México ICN - UNAM 97 - 12 Two - body

Two Lie algebraic forms of the 2-body Elliptic Calogero model are presented. Translation-invariant and dilatation-invariant discretizations of the model are obtained.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998